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Abstract

We develop a new approach to the fractal analysis of time series of various natural, techno-
logical and social processes. To compute the fractal dimension, we introduce the sequence of the
minimal covers associated with a decreasing scale �. This results in new fractal characteristics:
the dimension of minimal covers D�, the variation index � related to D�, and the new multifrac-
tal spectrum �(q) de5ned on the basis of �. Numerical computations performed for the 5nancial
series of companies entering Dow Jones Industrial Index show that the minimal scale ��, which
is necessary for determining � with an acceptable accuracy, is almost two orders smaller than
an analogous scale for the Hurst index H . This allows us to consider � as a local fractal char-
acteristic. The presented fractal analysis of the 5nancial series shows that �(t) is related to the
stability of underlying processes. The results are interpreted in terms of the feedback.
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1. Introduction

Nowadays, it is recognized that the realization graphs (time series) of most of natural,
technological and social chaotic processes are fractals [1–6] on some scales. Since,
as a rule, the processes are non-stationary, to analyze them we need to introduce a
local instantaneous parameter allowing one to follow the variations of the character
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of the processes disregarding non-essential details. This means that the characteristic
parameter has to be “macroscopic” such as temperature, pressure, chemical potentials in
statistical physics, and its change must be smoother than underlying variables. The basic
characteristic of fractals is the fractal dimension D. The procedure of determining D
implies that one represents a fractal as a sequence of fractal approximations associated
with a decreasing scale � which is some geometric factor of simple 5gures (say,
spheres or cells) forming the approximation. The various fractal dimensions related
to various representations (spherical, cellular, internal and so on), as a rule, are the
same. If a fractal is a graph of some one-dimension function and the simple 5gures
are two-dimension ones, then D is found from the power law

S(�) ∼ �2−D at � → 0 (1)

for the approximation area S(�). Meanwhile, in the practice, there exists the problem
of computing D for the following reason. On the one hand, a real time series always
has the minimal scale of fractality �0. On the other hand, for all fractal approximations
studied thus far, the approach to the asymptotic regime (1), as a rule, is too slow.
Thus, instead of computing D it is usual to compute the Hurst index H which, for
Gaussian processes, is related to D as H =2−D. However, H cannot be considered as
a local fractal characteristic, since for a reliable computation of H , it requires a very
large representative scale within which a fractal function changes the character of its
dynamical behavior many times.
To obtain a local fractal characteristic, it is necessary to construct the fractal approxi-

mations which yield a rapid approach to the asymptotic regime (1). A hint is suggested
by some arti5cial fractals like the Cantor set, the Serpinsky carpet and so on, whose
representations in the form of pre-fractals are sequences of the minimal covers. If we
plot the natural measures M (�) for such pre-fractals to the double logarithmic graphs,
we obtain exact straight lines. It means that the asymptotic regime (1) begins with the
maximal possible � which is equal to the representative scale. On the other hand, if we
cover the considered fractals in a way diIerent in comparison with the minimal covers,
the analogous graphs will not be straight lines. This suggests that using the minimal
covers for natural fractal functions may yield a similar eIect. In this case the minimal
representative scale may be quite small. Thus one may hope to view the corresponding
dimension D� as a local one.
In the present work we consider fractals corresponding to 5nancial series (FS). The

concept of fractals is certainly applicable to them and, as Mandelbrot writes [7], “is a
theoretical reformulation of a down-to-earth bit of market folklore-namely, that move-
ments of a stock or currency all look alike when a market chart is enlarged or reduced
so that it 5ts the same time and price scale”. There exists convincing evidence of
the fractal nature of FS in scaling of multifractal moments or probability distribu-
tion functions of successive variations [8–16]. In the practice of a fractal analysis for
the Hurst index H or multifractal spectrum �(q), representative time scales contain-
ing several thousand data are usually required [2]. Meanwhile, even a passing glance
at FS within the representative scale reveals the existence, at the very least, of two
kinds of states: Jats (stability motion) and trends (motion up or down). To perform
a local fractal analysis which distinguishes these states, it is necessary to 5nd fractal
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characteristics reliably determined on the basis of scales which are much smaller than
the representative ones. In Section 2, we introduce the following characteristics having
this property: the dimension of minimal covers D� and the variation index � closely
connected with D�. Beforehand we 5nd the minimal cover of fractal functions for the
class of covers consisting of rectangles with a base � related to the division of the
representative scale. Then we prove that D� coincides with the cellular dimension Dc.
In Section 3, we analyze the data of companies entering Dow Jones Industrial Index.
The data analysis using the index � is performed. In Section 4, we clarify the diIerence
between � and the Hurst index H . We compare the accuracies of the determinations
of the indices on the basis of the same data and show that the index � is computed
considerably more accurately than H . In Section 5, we introduce the function �(t). On
the basis of data analysis, we establish the empirical correlation between the value of
�(t) and the stability of a stock price. In Section 6, we theoretically substantiate this
correlation for the Gaussian process. We also introduce the persistent index 
 as the
natural parameter of instability. In Section 7, we discuss the results and interpret them
in terms of the feedback between a price and the price expectations of investors. In
conclusion we make generalizing remarks. In particular, we propose a new expression
for the multifractal spectrum �(q) instead of the one used thus far.

2. Dimension of the minimal covers D�, variation index and other fractal
characteristics

2.1. The index of fractality

We begin by recalling that in accordance with the very 5rst de5nition of fractals
given by Mandelbrot [1], the fractal is a set whose HausdorI-Besicovich dimension
(DHB) exceeds its topological one DT . On the basis of this de5nition, it is natural to
introduce the index of fractality F as

F = DHB − DT : (2a)

Since this de5nition is one of the key points in our analysis, we recall that the topolog-
ical dimension DT is the minimal number of coordinates which determine the position
of a point on the set. Together with DT , we may introduce a metric dimension D
which expresses the relation of the natural measure of the set (for example, the area of
a 5gure) to the unit of length. If we increase (decrease) the unit length in b times, then
the measure will decrease (increase) in bD times. It is clear that for common geometric
5gures and bodies D=DT . For the case of compact sets in an arbitrary metric space,
HausdorI [17] introduced the natural generalization of the metric dimension

DH = lim[lnN (�)=ln(1=�)] for � → 0 ; (2b)

where N (�) is the minimal number of spheres with radius � that cover the set. The
origin of formula (2b) is the following expression of the natural measure M (length,
area or volume) of common geometric curves, 5gures or bodies

M = lim[N (�)�D] for � → 0 (D = 1; 2; 3) ; (2c)
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Fig. 1. Minimal cover of the function f(t) with rectangles with the base � and its relation to the cellular
cover.

where N (�) is the number of simplexes (spins, sells or cubes) of a geometric scale �
that altogether approximate the set. Eq. (2c) implies that if we multiply the unit length
by b, the measure M of the set will be multiplied by b−D. Returning to Eq. (2b), we
notice that for usual curves, 5gures or bodies DH =DT . But for some more exotic sets
(namely, fractals), DH ¿DT and DH may be non-integer. In the case of non-compact
sets, we need to generalize de5nition (2b) which is exactly the de5nition of DHB (see,
for example, [18]). In the practice, as a rule, we consider compact fractals enclosed
into Euclidean space for which DHB=DH . Hereafter, we refer to the latter as the fractal
dimension D. Thus, the de5nition of the index of fractality (2a) may be rewritten as

F = D − DT : (2d)

In the following analysis, we consider other covers and the dimensions associated with
them.

2.2. The dimension D� and variation index �

Consider a real, continuous function y=f(t) determined within some line segment
[a; b]. Consider a division of the segment into equal pieces of length �, i.e., the division

!m = [a= t0¡t1¡ · · ·¡tm = b]; �= (b− a)=m : (3a)

Let us perform minimal covering of the function f(t) with rectangles related to the
adopted division (see Fig. 1). The bases of the rectangles are � while the heights
equal the amplitude Ai(�), which are the diIerences between the maximal and min-
imal values of the function f(t) within [ti−1; ti]. Then, the total area of a minimal
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cover is

S�(�) =
m∑
i=1

Si(�) =
m∑
i=1

Ai(�)� : (3b)

Introduce the notation

Vf(�) ≡
m∑
i=1

Ai(�) (3c)

and call Vf(�) by the variation of f(t) corresponding to the division scale �. In
accordance with (1), the dimension of minimal covers D� is determined from the
relation

S�(�) ≡ Vf(�)� ∼ �2−D� : (3d)

Then from (3d) it follows

Vf(�) ∼ �−� for � → 0 ; (4a)

where

� = D� − 1 : (4b)

Call the exponent � by the variation index.
Now we substitute (4b) into (2d) and take into account that in the case considered,

DT = 1. We obtain

F = � : (4c)

If, for example, f(t) is a continuous function with a continuous derivative, then it has
a restricted variation for � → 0 and therefore � = F = 0. To have non-zero � = F , a
function f(t) needs to be a fractal.

2.3. Relation between dimensions D� and Dc

To relate D� to other dimensions, particularly to the cellular dimension Dc, we
perform the cellular division of the plane containing the graph of the function f(t)
considered above, as shown in Fig. 1. Consider a segment [ti−1; ti] for which we can
write (see Fig. 1)

06Ni(�)�2 − Ai(�)�6 2�2 ; (5a)

where Ni is the number of cells covering the graph of f(t) within [ti−1; ti]. Dividing
(5a) by � and summing over i with account for (3a) and de5nition (3c), we get

06N (�)�− Vf(�)6 2(b− a) ; (5b)

where N (�)=�Ni(�) is the total number of cells of scale � covering f(t) within [a; b].
In the lim � → 0, from Eqs. (5b), (4a) we obtain

N (�)� ∼ Vf(�) ∼ �−� ; (5c)
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i.e., N (�) ∼ �−(�+1) which, in accordance with de5nition (2b), implies that

Dc = � + 1 : (5d)

Then, from (4b) we get

Dc = D� : (5e)

Since Vf(�) approaches the asymptotic regime quite rapidly (see below Section 3),
with account for (4a), relation (5b) divided by � may be rewritten as follows:

N (�) ≡ Sc(�)=�2 = A�−D + B(�)�−1 ; (6a)

where

06B(�)6 2(b− a) ; (6b)

D = Dc = D�; A= const : (6c)

Here, A�−D has been used instead of

Vf(�)=� ≡ S�(�)=�2 : (6d)

The last term of (6a) may yield the main contribution to the right-hand side in the
region �¿�1 where �1 is de5ned from the relation

��1 = A=B(�1) : (6e)

It is clear that in this region there may exist the intermediate asymptotic regime with
the power law that is diIerent from the main one. Hence, for � ≈ �1 there may exist
some “break” region where the power law changes the exponent. In our case such a
phenomenon is related to the inaccuracies of the cellular approximations.

3. Variation index and fractal analysis of �nancial series

The most popular representatives of fractal functions are 5nancial series (FS) f(t)=
X (t). The fractal structure of FS is usually explained by the existence of investors
with various horizons that are necessary for the stability of a market as a whole [19].
Below we analyze the stock prices of thirty companies entering Dow Jones Industrial
Index, for the period 1970–2002. The series X (t) contains the values of open, high,
low and close prices for 8145 running days. A fragment of such a series for Alcoa
Incorporation is presented, for instance, in Fig. 2 on the Japanese candles chart. For
the sake of simplicity, we restrict ourselves to the last 212 = 4096 records for each
stock. To compute the variation index �, we use n subsequently enclosed divisions !m

(3a) where m= 2n; n= 0; 1; 2 : : : 12. A division consists of 2n sub-intervals containing
�= 212−n days. Each next division is enclosed into the previous one. For every stock
price series we compute the function VX (�) (see Eq. (3c)) for any � corresponding
to the just mentioned divisions !m. For this end in view, we 5nd the amplitudes
Ai(�) which are equal to the diIerences between the highest and lowest prices within
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Fig. 2. Fragment from the daily series of Alcoa Inc. for the interval of 32 days. As usually for 5nancial
series, Japanese candles show price Juctuations for a trading day. The upper and lower boundaries of the
candle bodies (rectangles) show the open and close prices: the white (black) color of the bodies means that
the closing price was higher (lower) than the opening one. The upper and lower ends of candle shadows
(bars) show the maximal and minimal prices of a trading day.

Fig. 3. VX (�) for daily series of Exxon Mobil Corporation in double logarithmic scale computed for the
interval 212 = 4096 trading days.

[ti−1; ti] (in particular, if � = �0, then Ai(�) is equal to the diIerence between the
high and low prices within a day), and then compute VX (�) with the use of (3c).
In Fig. 3 we present a typical result (Exxon Mobil Corporation). As one can see,
the graph in double logarithmic scale exhibits a constant slope except for two last
points where the linear regime has a “break”. The slope of the linear section of the
graph equals −� in accordance with asymptotic relation (4a). At the con5dence level
$ = 0:95, the results of the analysis are as follows: (1) The value � = 0:5 comes into
the con5dence interval in ten cases from the thirty ones; (2) in four cases, �¿ 0:5;
(3) in sixteen cases, �¡ 0:5; (4) �min =0:469± 0:019; R2 =0:999 (Intel Corporation);
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Fig. 4. VX (�) for daily series of Alcoa Inc. in double logarithmic scale computed for the interval of 32
trading days.

(5) �max = 0:532± 0:007 (International Paper Company and Exxon Mobil Corporation,
for the former R2 = 0:997, for the latter R2 = 0:9997). Here R2 is the determination
index (if a 5tting curve coincides with data, then R2 = 1). The interpretation of these
results is given in Section 5. For any of the 30 stock series, the graphs of VX (�) have
constant slopes down to the cases when the full interval equals 32 days and even less.
In addition, if the representative scale is less than 500 days, then the break of the
linear regime vanishes in most of the graphs. As a typical example of VX (�) for a 32
days interval, we present the results for Alcoa Incorporation in Fig. 4. For $ = 0:95,
we obtain � = 0:5206± 0:0259; R2 = 0:9987.

4. Comparison of the variation and Hurst indexes

4.1. Comparison of the de9nitions

Recall that the Hurst index H is de5ned on the basis of the assumption that

〈Mf(�)〉 ≡ 〈|f(t + �)− f(t)|〉 ∼ �H for � → 0 ; (7a)

where 〈〉 means averaging over some time-interval. As it is known, if f(t) is a fractal
corresponding to the realization of a Gaussian stochastic process, then H relates to the
fractal dimension D as follows:

D = 2− H : (7b)

Thus, � and H are related in this case through

H = 1− � : (7c)
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To interpret this relation, for a division !m (3a) we introduce the following natural
de5nition of the averaged amplitude

〈A(�)〉 ≡ m−1
m∑
i=1

Ai(�) : (8a)

Let us multiply Eq. (3c) by m−1 ∼ � and take into account (4a). We get

〈A(�)〉 ∼ �H� ; (8b)

where

H� ≡ 1− � : (8c)

At 5rst sight, Eqs. (7a) and (8b) are quite similar since from (7c) and (8b) it follows
that H = H�. On the other hand, in Eq. (8b) we have the averaged amplitude within
a segment of the length � whereas in (7a) we have the averaged diIerence between
the initial and 5nal values of the function f(t) on the same segment. For Gaussian
stochastic processes in the limit � → 0

〈|f(t + �)− f(t)|〉 ∼ 〈A(�)〉 : (8d)

However, real 5nancial series are not Gaussian (at least locally). In addition, as dis-
cussed below, the procedures to compute � (or H�) and H are rather diIerent. Under
these conditions, the results for H� and H and their accuracies may quite diverge. This
issue is discussed in the next sub-section.

4.2. The comparison of numerical computations

As we noticed above, for a reliable determination of the Hurst index H , a rather
long series is required (as a rule, more than 103 terms). At the same time, as we have
shown, for an accurate determination of �, it is suOcient to have data for 32 or even
16 moments of time. Thus, if one determines both � (or H�) and H on the basis of the
same series X (t), the value of � will be considerably more accurate than that of H . To
demonstrate this phenomenon, we consider again the price series of Alcoa Inc. which
is the 5rst in the list of companies entering Dow Jones index. As usually, we denote
the close prices by C(t). For the analysis below, we consider diIerent 32-days intervals
containing values for N =32+1 running days. The series are shifted each about other
with 1 day. Thus, the number of intervals equals to 8145− 32=8113. For each series,
we compute � and H on the basis of Eqs. (7a) and (8a,b). To perform averaging in
these equations, we use data within non-overlapping sub-intervals which are formed by
division !m of a considered 32-days interval (m = 2n; n = 0; 1; 2; 3; 4; 5). Speci5cally,
we use the following sets of binary divisions: 32 sub-intervals with � = 1 day, 16
sub-intervals with � = 2 days, 8 sub-intervals with � = 4 days, 4 sub-intervals with
�=8 days, 2 sub-intervals with �=16 days and 5nally, 1 sub-interval with �=32 days.
When averaging in Eq. (7a), data within the sub-intervals are considered as independent
random realizations of the probability ensemble. This implies that we adopt

〈|C(t + �)− C(t)|〉= (�=32)
32=�∑
i=1

|C(ti+1)− C(ti)| ; (9a)
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Fig. 5. The widths of the con5dence intervals (H and (� for H and � at the con5dence level $= 0:95 for
diIerent 32-day intervals from the series of 8145-day close prices of Alcoa Inc. (the intervals are labelled
with their 5rst days).

where ti+1 = ti + �. In accordance with assumption (7a), we compute

y = ln〈|C(t;+�)− C(t)|〉; x = ln � ; (9b)

for every � and 5t the results of the computation by the curve

y = ax + b (9c)

with the use of OLS-estimator. Then, we identify a=H . As for VX , we compute it in
accordance with Eq. (3c) as follows:

VX (�) =
32=�∑
i=1

Ai(�) ; (9d)

where Ai(�) is the amplitude of X (t) within [ti; ti + �]. In accordance with assumption
(4a), we compute

y = ln VX (�); x = ln � ; (9e)

for every � and 5t the results by curve (9c) with the use of the OLS-estimator. Then
we identify a=−�.
As accuracy criteria of the determination of H and �, we chose the following two

characteristics of the 5ts: (1) the width ( of the con5dence intervals within which the
true values of H and � are situated with a probability of 0.95, and (2) K=1−R2 where
R2 is the determination index (if a 5tting curve coincides with data, then R2 = 1 and
K =0). For any of 32-day intervals of 8113 we computed �; (�; K� and H;(H ; KH . In
Figs. 5 and 6 we present a typical variation of ( and K from one of 32-day intervals
to the other (the intervals are labelled with their 5rst days). As seen from the Figs. 5
and 6, in the overwhelming majority of cases, the index � is determined much more
accurately than H . We present some numerical characteristics of the accuracies of �
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Fig. 6. The values K = 1− R2 corresponding to the same computations of H and � as in Fig. 5.

Fig. 7. Fit (9b) of H for the series in Fig. 2.

and H .

〈(�〉= 0:107; (max
� = 0:3; (min

� = 0:01 ;

〈(H 〉= 0:41; (max
H = 2:54; (min

H = 0:027 ; (10a)

〈K�〉= 0:0147; Kmax
� = 0:094; Kmin

� = 0 ;

〈KH 〉= 0:245; Kmax
H = 1; Kmin

H = 0:0003 :

In addition, for 99% of the intervals, (� ¡(H and for 91%, K� ¡KH . It is worth
discussing the cases when 5t (9b) and (c) for H is especially inaccurate. Such cases
correspond to intervals where prices are rather stable, and so 〈|C(t + �) − C(t)|〉 are
rather small. A typical interval for Alcoa Inc. is presented in Fig. 2. Fits (9c) for H
and � presented in Figs. 7 and 8, yield the following results:

H = 0:14± 0:21; KH = 0:67;

H� = 0:37± 0:05 (� = 0:63± 0:05); K� = 0:01 : (10b)

The above computations visually con5rm that using the variation index � is much more
convenient for fractal analysis than the Hurst index H .
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Fig. 8. Fit (9b) of � for the series in Fig. 2.

5. Empirical correlation between the variation index and stability of a stock price

It is worth underlining that the main advantage of the characteristic � in comparison
with H is the possibility of using it as an instantaneous parameter describing the
character of the dynamical behavior of some chaotic process. In the case of a FS, the
representative scale for determining � is of the order of the characteristic time of a
fractal state (trend or Jat). So, it is natural to introduce the function �(t) as the value
of � determined within the minimal interval �� foregoing the considered t, where �
can be computed with acceptable accuracy. If the function f(t) were determined on a
continuous segment, �� would be arbitrarily small. However, since f(t) has a minimal
scale �0 (in our examples, it is one day), then �� has a 5nite length. Let us take
�� equal to, say, 32 days. The function �(t) can be determined for the whole time
series except for the 5rst 31 days. We have done this for each FS entering Dow Jones
Industrial Index. In Fig. 9, we present a typical fragment from the daily 5nancial series
of the company Exxon Mobil Corporation together with the computed �(t). Even a
cursory look at Fig. 9 reveals that the value of � is related to the character of the
underlying process. In fact, in the interval between the 5rst and 39th days, where
the process is quite steady (Jat), the value of � considerably exceeds 0.5. Further,
� rapidly falls below 0.5 while the process turns into a trend. Finally, after the 56th
day, � varies near 0.5 while the state of the process is intermediate between a trend
and a Jat. The correlation between � and the character of the process takes place for
the majority of the fragments of each investigated FS. To show aggregated results, we
consider again the daily 5nancial series of the company Alcoa Inc. for the period 1970–
2002. We have considered 8113 overlapping 32-day intervals and for each one we
have computed � and diIerent Juctuation characteristics Fm; (m = 1; 2; 3; 4; 5) which
we consider as stability criteria (a lower Fm correspond to a higher stability). We chose
the following Fm:

F1 = log(Ci=Ci−32) ; (11a)

which is the logarithmic gain for a 32-day interval,

F2 = Ai=Ai−32 ; (11b)



M.M. Dubovikov et al. / Physica A 339 (2004) 591–608 603

Fig. 9. Fragment from the daily series of Exxon Mobil Corporation and the corresponding �(t).

where Ai is the amplitude of the 5nancial series for ith 32-day interval

Ai =Max(Hi; Hi−1; : : : ; Hi−32)−Min(Li; Li−1; : : : ; Li−32) ; (11c)

Hi(Li) is the maximal (minimal) price for the ith day,

F3 = ,(log[C(32)]) ; (11d)

which is the standard deviation of logarithms of the close prices for 32-day intervals.
F4 equals the slope coeOcient a of 5tting the close price series for the considered
32-day interval with the line (9b) where x is a time interval. Finally,

F5 =
i∑

j=i−31
(Cj − Cj−1)




i∑
j=i−31

|Cj − Cj−1|



−1

= (Ci − Ci−32)




i∑
j=i−31

|Cj − Cj−1|



−1

: (11e)

The computed values of � and Fm for each of the 32-day intervals are represented by
points in the correspondent plots (Figs. 10a–e). The plots exhibit a clear correlation
between � and the Juctuation characteristics Fm: large-scale Juctuations (instability)
decrease when � increases.
In the next section we substantiate this correlation for the simplest case of Gaussian

processes.

6. Theoretical substantiation of the correlation for Gaussian processes

We begin with considering the Wiener random process X (t). Recall that the classical
Wiener model of Brownian motion [20] is based on the following two assumptions.
First, increments of X (t) within any time-interval have a normal (Gaussian) distribution
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with 〈X (t)〉 = 0. Second, increments within non-overlapping intervals are statistically
independent. From these assumptions it follows that

〈[X (t)− X (t0)]2〉= ,2|t − t0| ; (12a)

where 〈〉 denotes ensemble averaging, and ,2 is the dispersion per unit time (in the
5nancial 5eld , is known as the volatility). Relation (12a) is invariant under the simul-
taneous stretches of the time unit in b times and of the length unit in b1=2 times. This
results in the fractal dimension of the graph of a process realization D=1:5 (�=0:5).
DiIerent generalizations of the model suppose a renunciation of either the indepen-
dency of increments or the normal law of their distributions. In the 5rst case, we
arrive at processes with a memory and, in particular, at the fractional Brownian mo-
tion [21,22], while in the second case we arrive at Levy motion [23–27] which has an
in5nite dispersion. Below we consider the simplest generalization of the Wiener model
within the limits of the Gaussian processes. It is the model of a fractional Brownian
motion XH (t) which is characterized by the Hurst index H :

〈XH (t)〉= 0; 〈[XH (t)− XH (t0)]2〉= ,2|t − t0|2H ; (12b)

where 0¡H ¡ 1; H �= 0:5. For convenience, we use a system of units in which ,=1
and consider realizations of the random process for which XH (0)=0. Then, from (12b)
we derive the correlation function:

〈−XH (−t)XH (t)〉= (22H−1 − 1)〈X 2
H (t)〉 ; (12c)

which can be interpreted as the correlation of past values of X (t) with future ones. For
H = 0:5 (� = 0:5) the correlation is absent. For H ¿ 0:5 (�¡ 0:5) the correlation is
positive. This implies that the sign of the variation of XH (t) in the past (interval from
−t to 0) is kept in future (interval from 0 to t). Such a process is called persistent and
may be viewed as unstable one. For H ¡ 0:5 (�¿ 0:5), the correlation is negative.
This implies that future variations have opposite sign to the past ones. Such a process
is called anti-persistent and may be viewed as a stable one. Thus, the result obtained
on the basis of the fractional Brownian motion substantiates the correlation between
the stability and � suggested by numerical computations in the previous section. Since
as it is known that the real time series locally is not Gaussian [28,29], the 5eld of
applications of the observed correlation is obviously wider. On the basis of the results
of the present and previous section, it is natural to introduce the persistent index 
 as
the parameter of instability through


= 0:5− � : (12d)

Below we use 
 as a feedback characteristic.

7. Discussions and conclusion

In the present work, we introduced the dimension of minimal cover D� as a new
fractal characteristic, coinciding with the fractal dimension D in the limit � → 0. Intro-
ducing D� implies using the variation index � (Eqs. (4a), (4b)). For one-dimensional
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Fig. 10. (a–e) Plots for the values of � versus one of the stability criteria Fm for each 32-day interval from
the daily series of Alcoa Inc. for the period 1970–2002. The de5nition of Fm (m = 1; 2; 3; 5) are given in
Eqs. (11a–e). The de5nition of F4 is given below Eq. (11d).

fractal functions, the index � may be viewed as the main fractal characteristic since it
coincides with the index of fractality F (Eq. (2d)). The numerical computation of the
data of companies entering Dow Jones Industrial Index has shown that the index � is
the most convenient characteristic for the fractal analysis of time series: the minimal
scale �� required for determining � with the acceptable accuracy is more than that of
the order of magnitude smaller than the correspondent scale for determining, say, the
Hurst index H (Figs. 5–8). Then we introduced the function �(t) for any t as the
value of �, computed within the minimal interval �� foregoing t. On the basis of the
wide set of data presented in Figs. 9, 10a–d, we empirically discovered the correlation,
theoretically substantiated for the fractional Brownian motion (Eqs. 12(b) and 12(c)),
between the instability of a stock price and �(t): the more the instability (large-scale
Juctuation), the less �(t). In addition, if �¿ 0:5, the process is stable; if �¡ 0:5, then
the process is unstable. On the other hand, �(t) may be viewed as the intensity index of
small-scale Juctuations since 〈A(�)〉 (Eq. (8a)) may be viewed as the average intensity
of local Juctuations within a scale �. In the case of FS, such local Juctuations may
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be interpreted as the response of a stock price to the external information. Thus, the
observed correlation between �(t) and the stability of a stock price may be reviewed
as the correlation between large-scale Juctuation and small-scale one.
It is worth noticing that the persistent index 
, determined in (12d) on the basis

of �, may be interpreted as the parameter of a feedback. Recall that a feedback is
the main macroscopic factor forming the dynamics of various natural, technological
and social systems in stable external conditions. A feedback arises when a system acts
on the environment and is acted upon by the latter. If the second action intensi5es
(relaxes) the 5rst one, then the feedback is positive (negative). In our case, a feedback
arises between the price expectations of investors (real or potential) and the price: the
actions of investors corresponding to their expectations, accelerate (brake) the motion
of a price in some direction which in turn accelerates (brakes) the expectations. If the
feedback is positive (
¿ 0) we have a trend. If the feedback is negative (
¡ 0), we
have a Jat. In any case, 
 may be interpreted as the intensity of a feedback. If the
feedback vanishes, then 
 = 0. In this case, under some natural conditions we have
an eIective market. The change of a stock price at any time in such a market is
determined only by an external force (information) at that time. In this case, one may
apply the stochastic model of a Brownian motion originally proposed by Bachelier in
1900 [30] namely in 5nance and then fully faithfully de5ned by Wiener [20]. Such a
model was used in famous works [31,32] awarded the Nobel Prize in 1997. As one can
see in Fig. 9, for real price time series 
 �= 0 (� �= 0:5). This means that the change of
a price is determined also by an internal state characterized by the feedback intensity

. The state depends on many factors (for example, avidity and fear) which are hard
separated. The Juctuations of the function 
 (or �(t)) are in many respects due to the
activity of 5nancial speculators both those who buy at the beginning of rising trends
and sell at the beginning of falling ones, and those who sell at the end of the former
and buy at the end of the latter (they also take the part of a natural stopper of the
positive feedback).
It is worth noticing that in real life, the analysis of the feedback has originated the

present approach. Thus, the development of the presented model was proceeding in the
opposite direction in comparison with the presentation. The 5rst author (MMD) has
generated the idea about the feedback that has required him to introduce the function
Vf Eq. (3c), index � Eq. (4a) and at last dimension of minimal cover D�. This has
predetermined the subsequent course of this study.
In conclusion, it is worth making two generalizing remarks. First, in the spirit of the

presented analysis, it is natural to introduce the new expressions for the multifractal
spectrum �(q) (see [33]). In particular, for 5nancial series it is de5ned through the

ln〈(Ai(�)=C(ti))q〉 ∼ �(q)ln � ; (13a)

instead of the usual one

ln〈(|C(t + �)− C(t)|=C(t))q〉 ∼ �(q)ln � : (13b)

Second, the performed analysis can be applied without change to other time series
as variations of cloudiness, rainfall, temperature, earthquake frequencies, rate of traOc
Jow [34–39], blood pressure, heart rate [40], and so on.
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